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Abstract

Ray-tracing algorithms are known for producing highly realistic im-
ages, but at a significant computational cost. For this reason, a large
body of research exists on various techniques for accelerating these
costly algorithms. One approach to achieving superior performance
which has received comparatively little attention is the design of spe-
cialised ray-tracing hardware. The research that does exist on this
topic has consistently demonstrated that significant performance and
efficiency gains can be achieved with dedicated microarchitectures.
However, previous work on hardware ray-tracing has focused almost
entirely on the traversal and intersection aspects of the pipeline. As a
result, the critical aspect of the management and construction of ac-
celeration data-structures remains largely absent from the hardware
literature.

We propose that a specialised microarchitecture for this purpose
could achieve considerable performance and efficiency improve-
ments over programmable platforms. To this end, we have devel-
oped the first dedicated microarchitecture for the construction of
binned SAH BVHs. Cycle-accurate simulations show that our de-
sign achieves significant improvements in raw performance and in
the bandwidth required for construction, as well as large efficiency
gains in terms of performance per clock and die area compared to
manycore implementations. We conclude that such a design would
be useful in the context of a heterogeneous graphics processor, and
may help future graphics processor designs to reduce predicted
technology-imposed utilisation limits.
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Architecture—Parallel Processing I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Ray Tracing;

Keywords: ray-tracing, ray-tracing hardware, bounding volume
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1 Introduction

Ray-tracing algorithms are known for producing highly realistic
images, but also for their high computational demands. This has mo-
tivated a large body of research on techniques for accelerating such
algorithms, on both CPU and GPU platforms. Perhaps the most
effective acceleration method known for ray-tracing is the use of
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acceleration data-structures. Among the most widely used acceler-
ation data-structures are bounding volume hierarchies (BVHs) and
kd-trees. These structures provide a spatial map of the scene that
can be used for quickly culling away superfluous intersection tests.
The efficacy of such structures in improving performance has made
them an essential ingredient of any interactive ray-tracing system.
When rendering dynamic scenes, these structures must be rebuilt or
updated over time, as the spatial map provided by the structure is
invalidated by scene motion.

For dynamic scenes, the proportion of time spent building these
data-structures represents a considerable portion of the total time to
image. A great deal of research has therefore been directed to the
goal of faster construction of these essential structures. Much of the
recent research has looked to parallel construction on both multicore
and manycore platforms [Wald 2007; Pantaleoni and Luebke 2010;
Wald 2012]. Such implementations have demonstrated that a great
deal of parallelism is available in this task, and have achieved large
performance improvements over serial algorithms.

Another proposed approach to achieving high ray-tracing perfor-
mance is with the use of specialised hardware devices. Little work to
date has been performed in this area, despite a number of researchers
demonstrating considerable raw performance and efficiency gains
with a variety of programmable [Spjut et al. 2009], fixed-function
[Schmittler et al. 2004] and hybrid architectures [Woop et al. 2005].
So far, these devices have relied on CPU support for acceleration
data-structure construction, or have resorted to refitting operations,
placing restrictions on the extent to which motion is supported
and/or degrading rendering performance. Therefore, the construc-
tion of acceleration data-structures in hardware remains an open
problem.

Previous research has noted that high-quality acceleration data-
structure construction is quite compute intensive and scales very
well on parallel architectures [Lauterbach et al. 2009; Wald 2012].
We thus hypothesize that a custom hardware solution to accelera-
tion data-structure construction would represent a highly efficient
alternative to execution of the algorithm on a multicore CPU or
manycore GPU if used in the context of a heterogeneous graphics
processor.

Recent research argues that multicore scaling is power limited due
to the failure of Dennard scaling [Esmaeilzadeh et al. 2011]. Es-
maeilzadeh et al. show that at 22nm, 21% of a fixed-size chip must
be powered off, and at 8nm, it could be more than 50%. This had
led some to coin the term dark silicon, for logic which must remain
idle due to power limitations. In response to this, some researchers
have proposed that efficient custom microarchitectures could help
heterogeneous single-chip processors to reduce future technology-
imposed utilisation limits [Venkatesh et al. 2010; Chung et al. 2010].
It is now a matter of identifying the most suitable algorithms for cus-
tom logic implementation for the ages of dark silicon.

To this end, we propose a design for what we believe to be the first
dedicated microarchitecture for the construction of an acceleration
data-structure. Such structures are fundamental to much of computer
graphics and simulation technology. The fast construction of such
data-structures is of particular interest to the ray-tracing community,
and for this reason, we focus on construction of high-quality, binned
SAH bounding volume hierarchies for ray-tracing. Such techniques
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can often produce hierarchies of quality quite close to SAH sweep
build methods, while being suitable in interactive contexts. Addi-
tionally, many other BVH builders depend on binned SAH meth-
ods in some way, including the spatial split oriented SBVH [Stich
et al. 2009], and also hybrid SAH/HLBVH builders [Garanzha et al.
2011]. As such, given that the binned SAH is commonly used in a
variety of construction algorithms, and given that it is a competitive
builder in its own right, we consider it to be the primary challenge
of any new implementation strategy, and choose to focus on it in
this paper.

We propose that a purpose-built microarchitecture for acceleration
data-structure construction will exhibit greater performance and ef-
ficiency than software implementations executed on current multi-
core and manycore processors. We can summarise the motivation
for including hardware support for binned SAH BVH construction
in a dedicated ray-tracing processor or other heterogeneous graphics
processor by noting the advantages of our microarchitecture:

• Accelerated Performance Raw construction performance im-
provements of up to 10× relative to current binned SAH BVH
software implementations, and significant performance im-
provements over some less accurate SAH builders. This is
achieved despite the fact that our results are measured with
large clock frequency, bandwidth, and die area disadvantages
compared to current multicore and manycore processors.

• Greater Efficiency Since our design achieves a performance
improvement with much fewer hardware resources, it repre-
sents a large efficiency improvement over existing software
approaches. Existing software methods scale quite well, and
require engaging a large amount of programmable resources to
achieve optimal performance. Utilising our design in a hetero-
geneous single-chip processor would minimise the hardware
resources needed to achieve fast builds. Since BVH construc-
tion is a core algorithm in ray-traced rendering, our design
could have performance implications not only for the BVH
build, but also for the rest of the application pipeline.

• Low Memory Bandwidth and Footprint Our design re-
quires much less bandwidth to main memory and requires a
small memory footprint for hierarchy construction compared
to software approaches. These bandwidth savings could be
used to support the additional parallelism already stated.

• Binned SAH Rebuild Speed Competitive with Updating
Our architecture is quite scalable and can achieve full binned
SAH rebuilds with performance similar to many software up-
dating strategies, while remaining within modest area and
bandwidth costs. This ensures higher quality trees, much fewer
edge cases and suitability for applications where updating may
not be appropriate (e.g. photon mapping). Full rebuilds also
do not limit scene motion in any way, in contrast to updating
schemes.

By this reasoning, we believe there is significant motivation for in-
cluding hardware support for acceleration data-structure construc-
tion in a heterogeneous graphics processor. We envision that such
logic could coexist with and complement programmable compo-
nents to form a hybrid rendering system. This is in fact quite similar
to how current rasterization-based GPUs operate.

2 Background

The bounding volume hierarchy (BVH) is one of the most widely
used acceleration data-structures in ray-tracing. This can be at-
tributed to the fact that it has proven to represent a good compro-
mise between traversal performance and construction time. In ad-

dition, fast refitting techniques are available for BVHs [Lauterbach
et al. 2006; Kopta et al. 2012], making them highly suitable for
deformable geometry.

The classical BVH is typically a binary tree in which each node of
the tree represents a bounding volume (typically an axis-aligned
bounding box (AABB)) which bounds some subset of the scene
geometry. The AABB corresponding to the root node of the tree
bounds the entire scene. The two child nodes of the root node bound
disjoint subsets of the scene, and each scene primitive will be present
in exactly one of the children. The two child nodes can be recur-
sively subdivided in a similar fashion until a termination criterion
is met. Typical strategies include terminating at a certain number of
primitives, or at a maximum tree depth.

For ray-tracing, many BVH construction algorithms follow a top-
down procedure. Starting with the root node, nodes are split accord-
ing to a given splitting strategy and child nodes produced which are
further subdivided until a leaf node is reached. The choice of how
to split the nodes can have a profound effect on rendering efficiency.
Perhaps the most widely used strategy is the surface area heuristic
(SAH). The SAH estimates the expected ray traversal cost C for a
given split, and can be written as:

C(V → {L,R}) = KT +KI

(
SA(VL)

SA(V )
NL +

SA(VR)

SA(V )
NR

)
where V is the original volume, VL and VR are the subvolumes
of the left and right child nodes, NL and NR are the number of
primitives in the left and right child nodes, and SA is the surface
area. KI and KT are implementation-specific constants represent-
ing the cost of ray/primitive intersection and traversal respectively.
The SAH can be evaluated for a number of split candidates and
the best candidate chosen. Sweep builds sort all primitives along a
given axis and evaluate each possible sorted primitive partitioning,
which yields highly efficient trees, but at a construction cost too high
for realtime performance. Binned SAH algorithms approximate this
process by evaluating the SAH at a small number of locations (typi-
cally 16 or 32) spread evenly over the candidate range. The binned
SAH algorithm achieves much faster build times, while preserving
high rendering efficiency, and is therefore more suitable for realtime
application.

2.1 Parallel Construction of BVHs

The construction of BVHs for ray-tracing is conceptually a very
parallel problem. Parallelisation schemes to date have utilised
many forms of parallelism, including assigning subtrees to individ-
ual cores, building single nodes using multiple cores, and parallel
breadth-first schemes. Both CPU and GPU approaches have utilised
such techniques. Our microarchitecture described in Section 3 fol-
lows similar principles, and since we wish to compare to these plat-
forms, we provide a brief overview of the key work to date.

Early parallel construction algorithms targeted multicore CPUs
[Wald 2007]. Wald’s algorithm distinguishes between the upper and
lower nodes in the tree, utilising a more data-parallel approach for
the upper nodes and a task parallel per-subtree scheduling for lower
nodes. In addition to construction, parallel refitting techniques for
BVHs have been shown on multicore CPUs [Lauterbach et al. 2006].

More recent work on multicore BVH builds include the Intel Embree
set of ray-tracing kernels [Ernst 2012]. The Embree project includes
support for SAH BVHs of several branching factors and is highly
optimised for current generation CPUs.

A breadth-first parallelisation of binned SAH BVH construction has
been shown to be effective on GPUs [Lauterbach et al. 2009]. Each
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child node generates a new thread in the build, allowing for a large
number of concurrent threads to effectively utilise the GPU. The
authors also propose an alternative hybrid LBVH/SAH scheme to
extract more parallelism at the top of the tree. This work was ex-
tended to the Hierarchical LBVH, to take greater advantage of data
coherence [Pantaleoni and Luebke 2010]. Other work on HLBVH
includes faster and more efficient implementations [Garanzha et al.
2011; Karras 2012].

A recent implementation of binned SAH BVH construction targets
the Intel MIC architecture [Wald 2012]. The tested architecture in
this work consists of 32 x86 cores operating at a frequency of 1GHz.
Algorithmically, this implementation resembles earlier work [Wald
2007]. A data-parallel approach is used for large nodes, and smaller
subtrees are assigned to individual threads. Furthermore, data quan-
tization of primitives is employed to improve cache performance, at
reasonable hierarchy quality degradation.

Sopin et al. describe another fast approach to binned SAH BVH
construction on the GPU [Sopin et al. 2011]. Like other algorithms,
this approach distinguishes between different node sizes for the pur-
poses of more efficiently assigning tasks to the GPU architecture,
utilising a larger number of cores for upper nodes, and assigning
fewer cores per node as the nodes become smaller. This work is
among the fastest published implementations of the binned SAH
BVH construction algorithm.

Finally, the OptiX ray-tracing engine [Parker et al. 2010] provides
developers with highly-optimised BVH builders for both CPU and
GPU platforms, including SBVH and LBVH-type hierarchies.

2.2 Ray-tracing Hardware

Previous work on ray-tracing hardware has included fixed-function,
programmable, and hybrid fixed-function/programmable designs.
We first examine the major fixed-function work and then move onto
programmable and hybrid solutions.

The SaarCOR architecture is a fixed-function design for ray trac-
ing of dynamic scenes [Schmittler et al. 2004]. The architecture
utilises multiple units in parallel, each traversing wide packets with
a kd-tree data-structure. Each unit operates on multiple packets in a
multithreaded manner to hide memory latency. An FPGA prototype
of this architecture is presented, albeit requiring CPU support for
data-structure construction.

More recent work on fixed-function ray-tracing hardware includes
the T&I engine [Nah et al. 2011]. It is a MIMD style processor
which operates on single rays, rather than packets. A ray dispatcher
unit generates rays, which are passed to 24 traversal units which
utilise a kd-tree data-structure. On encountering a leaf, the list units
fetch primitives for intersection. Intersection is split into two units
(IST 1 & 2) such that if a ray fails initial tests in IST1, data need
not be fetched for the rest of the procedure in IST2. Each unit pos-
sesses a cache, and on cache misses, rays are postponed in a ray
accumulation unit which collects rays waiting on the same data.
Running at 500MHz, simulations indicate that 4 T&I engines to-
gether can exceed the ray throughput of a GTX 480 GPU by around
5-10×. A ray-tracing GPU utilising the T&I engine, coupled with
reconfigurable hardware shaders and a multicore ARM chip for data-
structure construction, has also recently been proposed [Lee et al.
2012].

Hybrid fixed-function/programmable ray-tracing architectures have
also been proposed, such as the Ray Processing Unit (RPU) [Woop
et al. 2005]. Each RPU consists of multiple programmable Shader
Processing Units (SPUs), which utilise a vector instruction set.
Each SPU is multithreaded and avoids memory latency by switch-
ing threads when necessary. Each SPU can be used for a variety

of purposes, including intersection tests and shading. SPUs are
grouped into chunks containing a small number of units. All SPUs
in a chunk operate together in a lock-step manner. Multiple asyn-
chronous chunks work in parallel to complete a task. Coupled with
each SPU is a fixed-function Traversal Processing Unit, which can
be accessed by the SPUs via the instruction set and utilises a kd-tree
data-structure. A later version of this work, the DynRT architecture
[Woop et al. 2006] is designed to provide limited support for dy-
namic scenes by refitting, but not rebuilding, a B-KD data-structure.

The TRaX architecture represents some of the most recent work
on ray-tracing hardware [Spjut et al. 2009]. The design is pro-
grammable and consists of a number of thread processors which
possess their own private functional units, but which are also con-
nected to a group of shared functional units. Each software thread
corresponds to a ray, and the design is optimised for single rays,
rather than relying on coherent packets. The advantage of this archi-
tecture is that it is entirely programmable and yields good perfor-
mance for ray-tracing compared to GPUs.

The Mobile Ray-tracing Processor (MRTP) [Kim et al. 2012] is
a programmable design which takes a unique hardware approach
to solving SIMT/SIMD utilisation problems due to divergent code.
The basic architecture consists of three reconfigurable stream multi-
processors (RSMPs) which are used to execute one of three kernels:
ray traversal, ray intersection and shading. Kernels can adaptively
be reassigned to RSMPs to enable load balancing. Each RSMP is a
SIMT processor consisting of 12 Scalar Processing Elements (SPE).
Each SPEs can be reconfigured into either a 12-wide regular scalar
SIMT operation, or a 4-wide 3-vector SIMT operation. To improve
datapath utilisation due to code divergence, the system uses the reg-
ular scalar SIMT mode for traversal and shading, and reconfigures
into the vector mode for triangle intersection.

Finally, a number of commercial ventures utilising dedicated ray-
tracing hardware have been founded, including ArtVPS [Hall 2001]
and Caustic Graphics [Caustic Graphics 2012] which released cards
aimed at accelerating ray-traced rendering. These cards appear also
to focus on hardware for the actual tracing portion of the pipeline.
However, limited technical information is publicly available on these
products.

3 Microarchitecture

Figure 1a is a top level diagram showing the major units of our
microarchitecture. Visible in this diagram is a DRAM interface con-
sisting of a number of RAM pairs. Each RAM pair consists of two
memory channels. Before construction begins, scene primitives are
divided over the RAM pairs, with one RAM in each pair holding
primitives. Below the RAM pairs, is the upper builder. The upper
builder reads and writes directly to DRAM and is responsible for
constructing the upper levels of the hierarchy. Connected to the up-
per builder is one or more subtree builders. The subtree builders are
responsible for constructing the lower levels of the hierarchy. The
upper builder continues building until a node smaller than a prede-
termined size is found (typically, several thousand primitives). The
primitives corresponding to this node are then loaded into one of the
subtree builders, which contain a set of high bandwidth/low latency
on-chip internal memories. The subtree builder builds a complete
subtree from these primitives. Once all primitives are passed to a
subtree builder, the upper builder continues building its upper hierar-
chy, passing further subtrees to the other subtree builders, stalling if
none are available. The upper and subtree builders therefore operate
in parallel.

The upper and subtree builders are largely the same hardware, ex-
cept that the upper builder interacts with external DRAM, while the
subtree builders interacts with its internal memory buffer. The core
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logic of the subtree builder is actually mostly a superset of the up-
per builder. Therefore, we first describe in detail the subtree builder,
and then describe how it differs from the upper builder. An earlier,
limited prototype of the subtree builder was briefly outlined in our
poster [Doyle et al. 2012].

3.1 Subtree Builder

The architecture of the subtree builder is shown in Figure 1b. A rela-
tively small instantiation is illustrated, so as to maintain clarity. The
architecture is designed to operate on the AABBs of scene primi-
tives, as is common with other hierarchy builders, and is therefore
suitable for any primitive type for which an AABB can be calcu-
lated.

The subtree builder implements a typical binned SAH recursive
BVH construction algorithm, in line with established best practices
[Wald 2007]. The subtree builder consists of a number of units which
implement the various stages of this recursive algorithm. The first
units of interest are the partitioning units. Two partitioning units are
visible in Figure 1b, labelled PUnit0 and PUnit1. The purpose
of the partitioning units is, given a split in a certain axis, to read
a vector of primitives from the internal buffers and partition those
primitives into one of two new vectors, depending on which side of
the splitting plane they reside.

Each partitioning unit is connected to a pair of primitive buffers. Two
pairs are visible in Figure 1b, and are labelled Buff0 and Buff1. The
primitive buffers are a set of on-chip, high bandwidth/low latency
buffers (similar to a cache memory). The purpose of the primitive
buffers is to hold primitive AABBs as they are processed by the par-
titioning units. Each buffer pair is hardwired to one partitioning unit.
Primitive buffers are organised in pairs to facilitate swift partitioning
of AABBs. When the upper builder loads a set of scene primitives
into the subtree builder, the primitives are distributed to one of the
buffers from each buffer pair, with the opposite buffer in each pair
left empty. The partitioning units read AABBs from one of buffers
and rewrite the AABBs in the new partitioned order to the opposite
buffer. On the next recursive partitioning, the roles of the buffers
are reversed, and the primitives are read from the buffer they were
last written. This back-and-forth action allows concurrent reading
and writing of primitives which leads to swift primitive partitioning.
The data width of the interface to these buffers is set large enough
for a full primitive AABB to be read in each cycle. They could also
be implemented with several narrower memories in parallel.

Below the partitioning units in Figure 1b is the logic which deter-
mines the SAH split for the current node. The subtree builder is
capable of searching all three axes concurrently for the lowest cost
split. We implement the SAH determination with two types of unit:
a binning unit and an SAH calculator. Each partitioning unit is con-
nected to three binning units, one for each axis (labelled Bin x/y/z).
The binning units latch data from the output of primitive buffers, and
also keep track of the AABB of the current node. The binning oper-
ation is performed by calculating the centre of the primitive AABBs
and then binning this centre point into the AABB of the current hier-
archy node. The binning units output the chosen bin locations in all
three axes, and also the original primitive AABB which was used to
calculate those bin locations.

Below the binning units in Figure 1b, are the SAH calculators (8 are
pictured). Primitive AABBs and their chosen bin positions are fed
into the SAH calculators which accumulate an AABB and a counter
for each bin in each axis. Once all primitives are accumulated, the
SAH calculators evaluate the SAH cost for each possible split, and
output the lowest cost split found. Once the split has been chosen,
it is fed back to the partitioning units which partition the primitives
in their primitive buffers according to the split. The SAH evaluation

is expensive, and our design is multithreaded to hide the latency of
this unit.

3.2 Sequence of Operations

Now that we have established the function of each of the major
units, we now describe the sequence of operations that the subtree
builder performs to generate a hierarchy. Sequencing of operations is
performed by the Main Control Logic shown on the left of Figure 1b.
This control logic is not critical to our contribution and we therefore
restrict discussion of this to a more high level treatment as given in
the following sections.

Before the subtree builder is activated, the upper builder loads
AABBs combined with their primitive IDs (as a single data word)
into one of the primitive buffers in each buffer pair in a round-robin
assignment (i.e. the left buffer only of each pair, leaving the right
empty). This results in an approximately equal number of primitives
per buffer pair, facilitating load balancing. Primitive IDs are always
attached to their associated AABBs as they move between primitive
buffers, and are used for tree output. The bounding AABB of all
primitives is also loaded into a register at this point. Once all primi-
tives are loaded, an initial setup phase is run. All partitioning units
are signalled to dump the full contents of their primitive buffers into
the binning units. The results of the binning units are fed into a
single SAH calculator which calculates the split for the root of the
hierarchy. The output of the SAH calculator is the chosen SAH split,
the chosen axis and, importantly, the AABBs and primitive counts
of the two resulting child nodes. Once these values are obtained, the
main construction loop can proceed.

3.2.1 Main Construction Loop

The initial split phase produces the split for the root node. Each par-
titioning unit is then instructed to begin the main construction loop
of the builder. Each partitioning unit possesses in its buffer pair a
subset of the total primitives which must be partitioned according
to the split. Each of the partitioning units cooperate to partition all
primitives in a data-parallel manner. Each partitioning unit reads
its subset of primitives pertaining to the current node from one of
the buffers in its buffer pair. The partitioning unit then determines
on which side of the current splitting plane each primitive lies, and
then writes the primitives out in partitioned order into the opposite
buffer. Partitioning is achieved by maintaining two address regis-
ters, a lower and an upper register, inside each partitioning unit.
The lower and upper registers begin at the bottom and top address
respectively of the subset of primitives that belong in the node cur-
rently being processed. These registers are then multiplexed onto
the address of the primitive buffer as appropriate.

After a partition, each partitioning unit has two sublists of primitives
residing in its primitive buffers. To continue the recursive procedure,
processing must continue with one of these sublists, with the other
placed on a stack for future processing. Since we have several parti-
tioning units all partitioning a subset of the current node’s primitives
in their respective buffers, we really have several partitioned lists,
which when added together form the full list. To keep track of this in-
formation, we employ a wide stack. Wide stack elements include the
full AABB of the pushed node, and also separate primitive ranges
for each primitive buffer pair detailing where all primitives reside.
The stack also stores on which “side” of the primitive buffer pair the
primitives of interest reside.

When the partitioning units encounter a leaf, instead of recursing
again and writing the primitives back into the opposite buffer, they
write the primitive IDs into separate output FIFOs. Tree nodes are
also written into similar FIFOs. Nodes and primitive IDs are then
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Figure 1: (a) A top level overview of our binned SAH BVH construction hardware, showing memory interfaces, upper and subtree builders.
(b) Detailed diagram of the subtree builder microarchitecture.

collected from these FIFOs and written out to RAM.

3.2.2 Concurrent Calculation of the Next Split

In addition to partitioning the primitives of the current node, it is also
necessary to calculate the splits for these two new nodes. The fact
that we are partitioning means that we already have the SAH split
information which includes the AABBs of the two resulting child
nodes. Therefore, we have all the information necessary to begin
binning primitives into the new children concurrently while they
are being partitioned. During partitioning, primitives are not only
written into the opposite buffer, but are also fed into the binning
units. The binning units bin each primitive into either the left or
right child, depending on which side of the partition it belongs to,
by multiplexing the correct values into the pipeline.

The binning units output the bin decisions and primitive AABBs
which are then fed into one of the SAH calculator pairs as shown at
the bottom of Figure 1b. SAH calculators are placed in pairs, one
for each side of the split. If a primitive was on the left side of the
split in the previous node, it is fed into the left SAH calculator of
the pair, otherwise the right. Both calculators in a pair operate con-
currently. As each partitioning unit processes a subset of the node’s
primitives, each SAH calculator must monitor the output of each
binning unit (each set of three binning units are assigned to a par-
titioning unit, which is assigned to a primitive buffer pair). After
calculating the splits, processing continues with a valid child, nor-
mally the left, while the right split information is pushed to the stack
for later processing. If the node is a leaf, the stack is popped. This
stack contains the split, the axis, the AABB of the node, the result-
ing child AABBs and primitive counts, the ranges in the primitive
buffers corresponding to the node, and a single bit indicating on
which side of the primitive buffers the node’s primitives reside.

3.2.3 Multithreaded SAH Calculation

Once the partitioning units pass all of their primitives into the bin-
ning units, they must wait for all of them to be binned and for the
SAH calculator to return the next split so that they can begin par-
titioning again. In our implementation, the total combined latency
of the binning and SAH units is approximately 40 cycles. Stalling

would represent a large performance penalty because it would be in-
curred on every node of the tree. Instead, we hide the latency of the
SAH calculation, by taking a multithreaded approach that utilises
several SAH calculators. We allow context for multiple threads to be
maintained in the system, as shown in the upper half of the diagram.
Initially, there is only one thread in the system, representing the root
node. As new child nodes are created, we spawn these off as new
threads, until a predetermined number of threads is reached. Each
thread context stores the ranges in each of the primitive buffers of
the primitives in the thread, a split, a stack and stack pointer, an axis
and a node AABB (thread elements are similar to stack elements).
The new threads represent different subtrees. Each new thread that
is created is assigned to a pair of SAH calculators.

Each partitioning unit will hold a subset of the primitives in each
thread due to the round-robin assignment in the beginning. When
a partitioning unit finishes partitioning a node, instead of stalling
for the SAH calculation, it can switch context to the next thread in
the system. Once it has completed the last thread, it can return to
the first thread for which the split will now be ready. The round-
robin assignment means that partitioning units are therefore almost
always utilised (even when only one thread is present) and in addi-
tion to this, the system is load balanced as the assignment leads to
a roughly equal amount of primitives belonging to each thread in
each partitioning unit.

3.2.4 Upper Builders

As already explained, the upper builder and the subtree builder are
very similar. The upper builder also contains partitioning units, bin-
ning units and an SAH calculator pair which are only modified
slightly from their counterparts in the subtree builder. We can now
explain the difference between the subtree builder and the upper
builders. The principal difference is that the upper builder contains
no multithreading support (only one thread context) and utilises the
RAM pairs in place of the partitioning buffer pairs. It achieves ef-
ficient use of DRAM by reading primitives in bursts and buffering
writes into bursts before they are requested. Multithreading is unnec-
essary for the upper builder because it only constructs the uppermost
nodes of the hierarchy which contain possibly thousands of primi-
tives which are read in long streaming consecutive reads. Therefore
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the stall incurred by waiting on the SAH calculator (around 40 cy-
cles) is negligible. It is therefore not necessary to spend resources
on multithreading for the upper builder.

3.2.5 SAH Calculators

We now examine the SAH calculators in more detail. A block di-
agram for this unit is shown in Figure 2. The input to the SAH
calculator is a vector of AABBs and a vector of bin decisions. Each
AABB and each bin of these two vectors comes from a separate
binning unit. The first stage of the SAH calculator consists of multi-
ple blocks of buffer/accumulators, labelled (1) in the diagram. One
block exists for each binning unit in the design. There are three
buffer/accumulators per block, one for each axis. The purpose of
the buffer/accumulator is to take a sequence of primitive AABBs
and bin decisions from the binning units and accumulate the bin
AABBs and bin counts from this sequence into a small buffer. As
each buffer/accumulator block processes primitives from one bin-
ning unit, it computes a partial vector. Our current subtree builder
utilises 16 bins per axis, making one buffer accumulator 416 bytes
in size.

X Y Z

BUFF/
ACCUM

BUFF/
ACCUM

BUFF/
ACCUM

SAH

X Y Z

BUFF/
ACCUM

BUFF/
ACCUM

BUFF/
ACCUM

SAH
Y

1

2

3

MUX
LOWEST
COST

X
SAH
Y

SAHSAH
Z

Figure 2: Architecture of the SAH Calculator.

Once all primitives have been accumulated, each buffer/accumulator
is instructed to dump its contents in order. The contents of all blocks
are then merged into a new vector containing the complete bin
AABBs and counts by the units labelled (2). Note that there is a
separate list of bins for each axis, so we see three of these units in
the diagram. These three lists are then fed into three SAH evaluators
(one per axis, labelled (3)), which perform the actual SAH evalu-
ation and keep track of the lowest cost split so far. The output of
each evaluator is the lowest cost split in that axis. Finally, the global
lowest cost split is computed by examining these three values and
the SAH calculator signals to the rest of the circuit that the split is
ready.

4 Results and Discussion

To evaluate our architecture, we implemented it as a cycle-accurate,
synthesizable VHDL model at the RTL level. All results are sim-
ulated with Questasim 6.6 from Mentor Graphics. To model our
floating-point units, we utilised the Xilinx Floating-Point library
available with the Xilinx ISE development software. We chose these
cores as they have realistic properties, are proven in real chips, and
will allow us in future to quickly adapt our design to reconfigurable

systems once adequate equipment becomes available to us. Our sim-
ulations allow us to count the exact duration of the computation in
clock cycles. Our code is highly configurable, allowing attributes
such as the number of partitioning units, the number of threads, bin
sizes etc to be altered independently. There is therefore a large num-
ber of possible instantiations of the subtree builder. We present a
“standard instantiation” for each subtree builder which utilises four
partitioning units and sixteen SAH calculators (eight threads). Prim-
itive buffers are set to hold 2048 primitives each, yielding a maxi-
mum capacity for each subtree builder of 8192 primitives.

We model these buffers with Xilinx Block RAM primitives, which
are single ported RAMs with a memory width of 216 bits (one 32-bit
floating-point AABB and one primitive ID), a latency of one cycle,
and a throughput of one word per cycle. The total capacity of the
eight buffers is therefore 432 KB and the maximum internal band-
width is 216 bytes/cycle. We instantiate two such subtree builders
for our performance comparisons in Table 1. For our upper builder,
we choose an instantiation that utilises two RAM pairs (four DDR
ports) which determines an upper builder with two partitioning units,
two binning units and one SAH calculator pair.

We wish to estimate the performance of our design if implemented
in a dedicated ray-tracing or other graphics processor. For this rea-
son, we follow the assumptions made by earlier work on ray-tracing
hardware [Spjut et al. 2009; Nah et al. 2011] and assume a 200
mm2 die space @ 65nm and a clock frequency of 500MHz. This is
2.8× lower than the shader cores of a GTX480, which is the part of
the GPU used by all hierarchy construction implementations on that
platform.

We model our DRAM interfaces with a generic DDR model from
DRC computer written in Verilog. This DDR model provides an
interface with address and data lines, a read/write signal, burst length
etc. Each DRAM at peak is capable of delivering one 192-bit word
per cycle and also operates at 500MHz. The total bandwidth to each
DRAM in our simulations is just over 11 GB/s, and with our four
ports (two RAM pairs) is thus 44GB/s max, although our logic does
not request this value for much of the BVH construction. This value
is only a fraction of what can be found on a modern mid-range GPU.
We intend that our microarchitecture would reside on-chip with the
rendering logic and therefore we do not time any communication
with a host CPU or GPU. We always bin with 16 bins on all three
axes and terminate at four triangles per leaf. We compare to both full
binned SAH BVH implementations as well as lower quality hybrid
SAH builders. In all cases, we compare to the highest-performing
software implementations that exist to our knowledge. Simulating
our hardware was a time-consuming process (several days for one
build), and so we were unable to build all frames of our animated
test scenes (e.g. Cloth). Therefore, we chose the middle keyframe
from these animations.

4.1 Performance Analysis

Table 1 summarises our performance results. Our implementation
exhibits strong performance relative to the two full binned SAH im-
plementations. We note a raw performance improvement of about
4-10× over these manycore implementations. With HLBVH, a di-
rect comparison is difficult because they are two different algorithms.
The original idea of HLBVH was to remove much of the expensive
SAH calculation in order to improve performance, while preserv-
ing reasonable quality. As a result of this, HLBVH is typically 10-
15× faster than binned SAH on the same GPU. Regardless, we see
that our architecture is actually faster for the Conference scene than
HLBVH when measured by performance per clock cycle (extrapo-
lating from the clock frequency of the GPU and the build time).

Overall, we observe that our implementation can deliver high-
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quality, high-performance builds at speeds faster than current many-
core implementations. We believe that our high performance is
achieved through our low-latency/high-bandwidth primitive buffers
delivering very efficient streamed data access for the rest of the
circuit, which consists of a set of very fast dedicated units for the
expensive SAH evaluation and binning.

4.2 Bandwidth Utilisation

We instrumented our simulations to record the total bandwidth con-
sumed over hierarchy construction. These values are shown in Ta-
ble 1, and include reads and writes.

Bandwidth figures are typically not given in hierarchy construction
papers, and the only figures we could find were those of the original
HLBVH [Pantaleoni and Luebke 2010]. We exhibit around 2-3×
less bandwidth consumed than this implementation. We build only
the uppermost levels of tree in external DRAM, and output the tree
during construction. No other values are read or written to DRAM.
In addition, our memory footprint is also quite low, with the peak
footprint being 2× the scene size, which corresponds to about 40MB
for the Dragon scene, excluding the tree itself.

We propose that these bandwidth and footprint savings would be an
advantage when running other tasks in parallel with the builder such
as concurrent rendering/hierarchy construction.

4.3 Scalability

Figure 3 shows the scaling for the Cloth scene in our builder. We
begin with one subtree builder and one RAM pair, and scale to four
subtree builders and four RAM pairs, doubling the size each time
(i.e. 1, 2 and 4 subtree builders/RAM pairs). Unfortunately, scaling
past this point caused our simulations to run out of memory on our
test machine. However, as the graph shows, our scalability is quite
good over these three instantiations, and is very close to linear within
this range. Very little overhead is associated with assigning tasks to
subtree builders, and design is naturally load balanced as subtree
builders only ask for work when idle.
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Figure 3: Scalability of our architecture in the Cloth scene.

4.4 Tree Cost

We also measure the SAH cost of the trees produced by our builder
and compare these costs to competing approaches in Table 2. Our
builder precisely follows a classical binned SAH build, with no ad-
justments, thus ensuring high quality. The only builder in our com-
parison for which this is also true is Sopin et al., as Wald performs
quantization of vertices and HLBVH methods only perform the
SAH on a small fraction of the nodes. We express the SAH cost
as a ratio to a full SAH sweep build. The sweep build cost is set at
100%, and lower values are better.

As Table 2 shows, we exhibit high tree quality, with tree costs quite
close to a full sweep build in many cases. This ensures high ef-
ficiency in rendering, which represents a further performance ad-
vantage that our design can offer, along with minimising hardware
resources and very fast build times. The exception to this is the Con-
ference scene, which is not surprising as other authors have reported
lower quality with this scene in binned SAH builders [Wald 2007;
Lauterbach et al. 2009].

4.5 Hardware Complexity

Finally, we estimate the hardware resources required for our microar-
chitecture. We first estimate the resources required for the subtree
builder as it represents the majority of the design. Table 3 shows
the required number of floating-point cores and register space need
for each major design unit in the subtree builder. These values in
themselves represent a technology-generic expression of required
resources.

Using this tabulation, we follow closely the procedures of earlier
work [Nah et al. 2011] and utilise published figures on a 65nm li-
brary [Spjut et al. 2009] to perform an area estimate of our design.
Table 4 summarises our results. A 4 KB register file is included in
this library and we determine that we require register space equiv-
alent to 120 of these. The other major component of our subtree
builder is the primitive buffers. We note the similarity between a
cache memory and our primitive buffers and model them using the
CACTI cache modelling software as a direct-mapped cache (cache
size 55296 bytes, line size 27 bytes, associativity 1, number of banks
1, and technology 65nm). This is probably an overestimate, as our
primitive buffers are simple RAMs and do not require any caching
logic. The CACTI tool reports a size of 0.94mm2 for one buffer.

Control logic also requires resources. We once again base our esti-
mates on earlier work [Nah et al. 2011; Muralimanohar et al. 2007],
and model this as 35% overhead of the FP cores. Finally, we choose
also the same estimate as these authors for wiring overhead at 69%.
We thus estimate the total die space of the subtree builder to be
31.88mm2 at 65nm, or 16% of our very conservative 200mm2 as-
sumed die size, and only around 6% of the GTX 480’s die size,
(which actually uses a smaller feature size of 40nm [NVIDIA 2010],
so our design would probably consume even less than this). Com-
paring to the T&I engine [Nah et al. 2011], we find that one builder
is about 2.6× the size of a T&I core, which consumes 12.12mm2.
We note that four T&I cores @ 500MHz obtain a 5 - 10× perfor-
mance increase over a GTX480 GPU implementation in terms of
ray throughput. Table 1 shows that we can obtain a similar factor
for building binned SAH hierarchies with only two subtree builders.
Performing a similar analysis reveals that our upper builder only
adds about another 5mm2 to this. Therefore, we can conclude that
our resource consumption is comparable to this traversal engine.

4.6 General Discussion

4.6.1 Comparison with Refitting

We believe it is important to consider the advantages of our sys-
tem compared to refitting operations. For deformable scenes, refit-
ting methods are quite useful, but exhibit a few drawbacks. Firstly,
refitting usually results in lower quality trees. Secondly, these ap-
proaches can exhibit edge cases, where performance diminishes to
the point where full rebuilds actually give a faster time to image
[Lauterbach et al. 2006; Kopta et al. 2012]. Furthermore, our sys-
tem is already competitive with these schemes. For example, we
build the Cloth scene in 3ms whereas recent rotation methods spend
around 2.98ms in updating this scene [Kopta et al. 2012]. Finally,
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Table 1: Absolute build times in milliseconds and bandwidth usage for our BVH builder compared to software implementations. A - indicates
that the scene was not tested in that work.

Intel MIC GTX 480 GTX 480 Hardware BVH Hardware BVH
1000MHz 1400MHz 1400MHz 500MHz BW Usage

[Wald 2012] [Sopin et al. 2011] [Garanzha et al. 2011] (ours)
Toasters (11k) 9ms 13ms - 1ms 2MB

Cloth (92k) 19ms 19ms - 3ms 25MB
Conference (282k) 41ms 98ms 6.2ms 11ms 120MB

Dragon (871k) - - 8.1ms 30ms 380MB

Table 2: Comparison of the SAH costs produced by our builder with
those of competing implementations. Unfortunately, Sopin et al. did
not provide tree quality measurements in their work, but their tree
costs would probably compare quite closely to ours, as they use a
very similar approach. Tree costs for HLBVH are taken from both
the original HLBVH by Pantaleoni and Luebke and also Garanzha
et al. to allow for more data points for comparison. Wald gives
cost ratios compared to a binned builder with a large number of
bins, whereas we compare to a full sweep builder. Although running
simulations was extremely time-consuming for us, we were able to
use our CPU builder which gives identical output to our hardware
to get extra quality results.

[Wald 2012] [Pantaleoni and
Luebke 2010]

(ours)

Toasters - - 99%
Cloth - - 101%

Conference 101% 117% 114%
Exp. Dragon 103% - 105%
Armadillo - 109% 101%

Dragon - 112% 101%

Table 3: Total number of floating-point cores and register space.

Part. Unit Bin. Unit SAH Calc. Total
# Used 4 4 16

FP ADD 1 3 9 160
FP SUB 3 9 9 192
FP MUL 2 6 12 224
FP INV 1 3 0 16
FP CMP 0 0 144 2304

REG 80KB 4KB 9KB 480KB

there are applications (e.g. photon mapping) where refitting may not
be appropriate.

4.6.2 Comparison with HLBVH

The HLBVH method is probably the fastest software method known
for building BVHs. However, like refitting, it results in lower quality
trees (with SAH costs of around 110% - 115%). As already stated,
it is possible for us to construct a hierarchy in many cases in fewer
clock cycles than a GPU implementation of HLBVH, despite all
of our hardware resource disadvantages and using a much more ex-
pensive algorithm. Interestingly, the HLBVH actually performs a
binned SAH similar to our own for the upper levels of the hierarchy,
consuming as much as 26% of the build time [Garanzha et al. 2011].
One could envision our builder as part of a hardware or hybrid hard-
ware/software solution to HLBVH also. Our work would be an ideal
starting point for further research on the hardware implementation
of HLBVH or other algorithms. We see our microarchitecture as
a fixed-function module that could be integrated into any hetero-
geneous computing platform, especially a ray-tracing GPU. Our

Table 4: Total area estimation of our subtree builder in mm2.

Unit Type Area (mm2) # Used Total Area (mm2)
FP ADD 0.003 160 0.48
FP SUB 0.003 192 0.58
FP MUL 0.01 224 2.24
FP INV 0.11 16 1.76
FP CMP 0.00072 2304 1.66
REG 4K 0.019 120 2.28

Prim Buffer 0.94 8 7.52
Ctrl etc. 2.35 - 2.35
Wiring 13.02 - 13.02
Total 31.88

design could represent a full BVH construction subsystem in itself,
or be part of a larger subsystem that is capable of building different
types of data-structure.

4.6.3 Power Consumption

An important consideration for any microarchitecture is power con-
sumption, and indeed power is likely to dominate architecture de-
signs in the near future. Although at the time of writing we were
unable to perform a detailed power analysis of our architecture due
to software availability limitations, we can identify several char-
acteristics of our design which are likely to make it much more
power-efficient than a GPU or multicore approach.

To perform a more one-to-one comparison of power efficiency, we
scaled down the design presented in Section 4 such that its perfor-
mance would approximately match the two full binned SAH imple-
mentations in Table 1. This resulted in an instantiation of only one
RAM pair and one subtree builder, operating at the slower speed of
250MHz. The subtree builder in this instance used the same param-
eters as the design in Section 4 (number of units, threads etc).

The first such characteristic is clock frequency. Power consumption
is linearly dependent on clock frequency. A value of 250MHz is
only one quarter the speed of an Intel MIC and around one fifth the
speed of the shader cores of the GTX480.

The second characteristic of the design is its estimated circuit size
as shown in Table 4. The GTX 480 utilises a 529 mm2 chip size
and publications indicate that the vast majority of this space is spent
on shader cores and the cache [Wittenbrink et al. 2011] (i.e. the re-
sources utilised in software implementations of BVH construction).
Our proposed downsized implementation would not be much larger
than the value of 31.88mm2 shown in Table 4, making it around
10-15× smaller. On top of this, the GTX 480 uses a smaller feature
size (40nm) [NVIDIA 2010], whereas our estimates are based on
65nm libraries, so the actual difference should be even larger. The
significance of this is that much fewer transistors would be needed
to implement our design, consequently consuming less power.

One possible confounding of this observation may be a difference
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in the level of switching activity between a GPU and our hardware,
and a resulting difference in dynamic power per circuit element. To
investigate this, we utilised data from our RTL simulations to calcu-
late the average activity of each class of FP core and the primitive
buffer read and write ports in our design. The activity refers to the
proportion of clock cycles in which a unit actually produces a result.
For example, one result every two cycles would result in an activ-
ity of 50%. In each case, our switching activity was within 20%, a
typical value for many circuits. We would therefore not expect the
design to exhibit unusually high dynamic power.

Finally, and perhaps one of the most significant observations is to do
with data access. It is known among chip designers that off-chip data
access to DRAM is around two orders of magnitude more expen-
sive than accessing a local buffer in terms of power consumption,
and even accessing a cache across the chip can be well over one
order of magnitude more expensive [Dally 2011]. In addition, the
power consumption of off-chip memory accesses is known to be
more than an order of magnitude more expensive than floating-point
operations [Dally 2009]. Moving data on and off the chip thus be-
comes a substantial portion of the total power consumption. Table 1
and Section 4.2 show that our design generates about half the num-
ber of data accesses to external memory than competing software
approaches for the same scene, and this could be reduced further
by increasing the size of the primitive buffers. In addition to this,
all of our internal accesses are highly local to the primitive buffers,
indicating high power efficiency once again.

Taking all of these observations into account, we believe it is likely
that our design offers a much more power-efficient alternative to soft-
ware algorithms running on manycore processors. The prediction
of many in the computer architecture [Esmaeilzadeh et al. 2011;
Dally 2011] and graphics communities [Johnsson et al. 2012] is
that scaling of future processor designs will be limited by power
consumption. We argue, as other authors have argued [Chung et al.
2010; Venkatesh et al. 2010], that judicious use of fixed-function
may form part of a solution to this problem. Based on our results
and observations, we propose that our design would be a strong
contender for this purpose, especially as acceleration data-structure
construction is useful in a broad range of applications, including
other rendering algorithms and collision detection.

5 Conclusion

In this paper, we presented one solution to a custom microarchitec-
ture for the construction of binned SAH BVHs for ray-tracing. We
propose that this logic could be included as an efficient alternative
to software-based builds in a heterogeneous graphics processor. Our
results indicate that this approach offers:

• Acceleration of up to 10× for binned SAH BVHs compared
to manycore platforms.

• Low memory bandwidth due to explicit management of on-
chip buffers and local register file, and the elimination of in-
struction fetches. A low memory footprint is also observed.

• Our design consumes minimal hardware resources, represent-
ing a large efficiency improvement over software BVH builds
which typically engage almost the entire chip.

• Preliminary estimates indicate that power efficiency is likely
to compare favourably to software implementations running
on manycore processors.

These observations indicate that our microarchitecture is overall
more efficient at this task than a software approach. Ultimately we
would like to see our design integrated into a programmable graphics
processor, and we believe we can offer these advantages to such a

system. The field of custom hardware for ray-tracing is in its infancy
and we believe it is important to explore alternative hypotheses for
how each task could be performed.

The primary disadvantage of our design is that it is fixed-function.
However, our design is quite configurable and many parameters of
the build can be changed. Furthermore, the construction process
for other spatial index structures such as kd-trees is highly similar,
and only relatively small modifications would be required to add
this functionality to our hardware. Additionally, as previous authors
have argued, we propose that our design should be coupled with
programmable cores, yielding even greater flexibility. Our design
could then be used in any technique for which a binned SAH forms
part of the process (e.g. HLBVH, selective restructuring, software-
controlled construction order for out-of-core methods). Thirdly, al-
though we focus on ray-tracing in this paper, our builder is also
immediately applicable to other applications, such as collision de-
tection and even photon mapping by utilising the BVH-based tech-
niques of [Fabianowski and Dingliana 2009].

We also consume hardware real estate. However, we have demon-
strated that this is comparable to previous traversal hardware and
we argue that this would make sense especially in the context of a
ray-tracing processor as it is a core algorithm in this application.

For our future work, we are actively pursuing more accurate area and
power estimates, as well as a number of circuit optimizations which
should further improve performance and efficiency. It would also be
interesting to investigate generalization of the design to construct
other hierarchies such as kd-trees and hybrid LBVH/SAH BVHs
and see to what degree efficiency can be preserved.
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